
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS                     Vol. 6, No. 1-2, January-February 2012, p. 1 - 6  

 

Design of triangular FBG filter for sensor applications 

using composite differential evolution  
 

XIANGTAO LI, MINGHAO YIN
*
 

College of Computer Science, Northeast Normal University, Changchun, 130117, P.R. China 

 

 

 
Fiber Bragg grating is one of the most important optical communication optimization problems of current interest.  The 
Triangular FBG Filter (TFBG) can be used as a readout device in FBG-based sensor application. This article describes the 
application of a recently develop metaheuristic algorithm, known as the composite differential evolution (CoDE), to optimize 
a TFBG filter design problem for a given grating length. The CoDE has been used to solve a difficult instance of the design 
problem and the optimization goal in each example is easily achieved. The experimental results of the CoDE algorithm have 
been shown better than the recently published results obtained using CMAES algorithm is a statistically meaningful way. 
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1. Introduction 
 

Fiber Bragg grating has an important role in diverse 

fields ranging from optical communications to optical 

sensing.  In order to handle the advantages such as low 

insertion loss, low polarization sensitivity, compactness, 

low cost, all-fiber geometry and ease of fabrication, the 

Fiber Bragg grating is realized as optical filters in 

wavelength division multiplex systems and fiber sensor 

systems [1]. Then, experiments have been verified that the 

TFBG filter as wavelength readout devices have the 

advantages of high sensitivity as well as immunity from 

the light source instability, power fluctuations and the 

uneven power distribution of source spectrum. The design 

and fabrication of FBGs have recently attracted much 

attention in the field of fiber optics [2]. Many 

methodologies have been proposed to solve the triangular 

FBG in the literature. In inverse scattering based FBG 

filter design methods, for a fixed grating length, 

coupling/index modulation coefficients are evaluated. 

Therefore, it is very difficult to find optimal grating length 

fro the desired TFBG filter specifications.  

It is well known that the classical optimization 

methods need a stating point that is reasonably close to the 

final solution, or they are likely to be stunk in a local 

minimum. The quality of the solution strongly depends on 

the estimation of the initial values. If the initial values fall 

in a region of the solution space where all the local 

solutions are poor, a local search is limited to finding the 

best of these poor solutions. Since these disadvantages of 

the classic optimization techniques, the heuristic 

optimizations techniques such as such as genetic algorithm 

(GA), particle swarm optimization algorithm (PSO), and 

differential evolution [3-8] have been proposed to 

accurately solve FBG filter.  

Particularly, Differential evolution (DE) [9] is a 

method that optimizes a problem by iteratively trying to 

improve a candidate solution with regard to a given 

measure of quality. DE is a simple yet powerful population 

based, direct search algorithm with the generation and test 

feature for global optimization problems. The basic idea of 

DE is to create new candidate solutions by combining the 

parent individual and several other individuals of the same 

population, and a candidate replaces the parent only if it 

has better fitness.  Previous work showed the differential 

evolution to be an effective algorithm for some kind of 

problems. Furthermore, the differential evolution is well 

suitable to solve this problem because of the algorithm is 

easier to implement than GA and applied design problem 

with both discrete and continuous design parameters. In 

order to demonstrate the advantages of the proposed 

design, the results obtained using CMAES are compared. 

In this paper, we will use the composite differential 

evolution (CoDE) to perform triangular FBG filter. Here, 

this algorithm employed three trial vector generation 

strategies and three control parameter settings. These 

strategies and parameter settings have distinct advantages 

and therefore they can complement one another. In CoDE, 

each strategy generated its trail vector with a parameter 

setting randomly selected from the parameter candidate 

pool. This algorithm is very easy to implement.  Previous 

work showed the CoDE algorithm to be an effective 

algorithm for the numerical global optimization. 

Furthermore, this algorithm is well suitable to solve the 

triangular FBG filter because of the algorithm is easier to 

implement than GA and applied design problem with 

continuous design parameters. In order to demonstrate the 

advantages of the proposed design, the results obtained are 

compared with CMAES. The experimental results show 

the CoDE algorithm is very competitive. 

The rest of this paper is organized as follows: in 

section 2 we will introduce the problem formulation, 

differential evolution and the composite differential 

evolution.  Section 3 describes experimental result. In the 
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last section we conclude this paper and point out some 

future research directions. 

 

2. Theory 
 

The problem described is as follows: in order to 

design of a FBG filter, the grating length is divided into n 

piecewise uniform sections.  Let us assume the index 

modulation profiles are known for all the n sections. Then, 

for the entire grating, the transfer matrix can be obtained 

by chain multiplying the individual transfer matrices of the 

grating sections using the following equation: 
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Here, aE  and bE denote the forward and backward 

complex electrical fields, and kT represent the transfer 

matrix of the kth section. By using the boundary constraint 

)(LEb =0, the complex reflection coefficient r can be 

obtained as 
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The main requirements of an FBG filter for sensor 

application are a triangular spectrum with linear edges and 

a large bandwidth. 

 

 

2.1 Objective function of TFBG filter 

 

The main objective of the FBG filter design is to find 

an optimum index modulation profile and to design a 

linear edge reflectivity spectrum and desired bandwidth.  

In general, evolutionary algorithms use the concept of 

fitness to represent a particular solution that satisfies the 

design objective. For the TFBG filter spectrum. In 

designing the TFBG filter for specified bandwidth, the 

sum of square errors between the desired triangular and 

calculated spectra is used as the fitness function as follows: 
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Where idR ,  and iR  are the desired and calculated 

reflective power at ith wavelength in the selected 

wavelength window. In the reflective power, the change in 

wavelength should be high to achieve better accuracy in 

wavelength window. Therefore, the highest value of the 

reflective power is at the centre wavelength. The triangular 

spectrum mask with 0.25 nm bandwidth and 90% 

reflective power at centre wavelength is show in Fig. 1. 
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Fig. 1. Triangular spectrum mask with a bandwidth  

of BW=0.25 nm. 

 

 

2.2 Differential evolution algorithm 

 

Differential Evolution (DE) is an Evolutionary 

Algorithm first introduced by Storn and Price [9]. Similar 

to other evolutionary algorithms particularly genetic 

algorithm, DE uses some evolutionary operators like 

selection recombination and mutation operators. Different 

from genetic algorithm, DE use distance and direction 

information from current population to guide the search 

process. The crucial idea behind DE is a scheme for 

producing trial vectors according to the manipulation of 

target vector and difference vector. If the trail vector yields 

a lower fitness than a predetermined population member, 

the newly trail vector will be accepted and be compared in 

the following generation. Different kinds of strategies of 

DE have been proposed based on the target vector selected, 

the number of difference vectors used. In this paper, we 

use two strategies, DE/rand/1/bin, described as follows. 

For each target vector ( )
i

x t , trail vector ( )
i

v t , i = 1, …, 

NP, let N be the dimension of target vector, and G be the 

G generation. the mutant vectors are generated in these 

DE/rand/1/bin strategies respectively: 

For DE/rand/1/bin 

 

, , , ,( )i G a G b G c Gv x F x x                       (4) 

 

Where , , , [1, , ]a b c d NP  are randomly chosen 

integers, and a b c d i    . F is the scaling factor 

controlling the amplification of the differential evolution. 

The cross-over operator, implements a recombination 

of the trial vector and the parent vector to produce 

offspring. This operator is calculated as: 
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Where ],,1[ Dj  ; [0,1]jrand  ; ],,1[ Djrand   is  

the  randomly chosen index ,CR is the crossover rate 

Gijv ,,  is the difference vector of the jth particle in the ith 
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dimension at the Gth iteration, and  Giju ,, denotes the trail 

vector of the jth particle in the ith dimension at the Gth 

iteration. Selection operator is used to choose the next 

population between the trail population and the target 

population: 
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The standard differential evolution algorithm can be 

described as the followings: 

 
procedure Algorithm description of DE algorithm 

begin 

Step 1: Set the generation counter G=0; and randomly initialize a 

population of NP individuals iX . Initialize the parameter F, CR 

Step 2: Evaluate the fitness for each individual in P. 

Step 3: while stopping criteria is not satisfied do 

for i= 1 to NP 

select randomly idcba   

for j=1 to D 

 Drandjrand *)1,0(  

If rand(0,1) CR or j== randj  then 

)( ,,,, jcjbjaji xxFxu   

Else 

jiji xu ,,   

   end if 

end for 

end for  

for i=1 to NP do 

Evaluate the offspring iu  

If iu  is better than iP  then 

iP = iu  

end if  

end for 

Memorize the best solution achieved so far 

Step 4: end while 

end 
 

2.3 Composite DE (CoDE)  

 

Wang et al [10] proposed a new composite DE, CoDE, 

which is combining several effective trail vector 

generation strategies with some suitable control parameter 

settings in a random way to generate trail vectors.  This 

algorithm has a simple structure and is easy to implement. 

This basic idea of the algorithm is to randomly combine 

several trail vector generation strategies with a number of 

control parameter settings at each generation to create new 

trail vector.  The above idea is illustrated in Fig. 2. In the 

paper, the author choose three trail vector generation 

strategies and three control parameter settings to constitute 

the strategy candidate pool and the parameter candidate 

pool, respectively. The three selected trail generation 

strategies are: 

(1) “rand/1/bin”    

(2) “ rand/2/bin” and    

 (3) “current-to-rand/1” 

Note that the “current-to-rand/1” strategy, the binominal 

crossover operator is not applied. The three control 

parameter settings are: 

(1)  [F=1.0, Cr=0.3]   

 (2)  [F=1.0, Cr=0.9]     

 (3)  [F=0.8, Cr=0.2] 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

Fig. 2. Illustration of combining trial vector generation strategies with control parameter settings. 

 

 

The three strategies and three parameter settings are 

frequently used in many DE variant and the properties 

have been discussed in [10]. At each generation, each trail 

vector in strategy candidate pool is used to create a new 

trail vector with a control parameter setting randomly 

chosen from the parameter candidate pool. Then three trail 

vectors are generated for each target vector. The best ones 

the first trial vector generation strategy

the mth trial vector generation strategy
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enter the next generation if it better than its target vector.  

The pseudo code of CoDE is presented as follow: 

 
procedure Algorithm description of CoDE algorithm 

begin 

Control parameter: 

NP:  the number of individuals at each generation. 

Max_FES: maximum number of function evaluation 

evaluations. 

The strategy candidate pool: “rand/1/bin”, 

“rand/2/bin”, “current-to-rand/1” 

The parameter candidate pool: [F=1.0, Cr=0.3], 

[F=1.0, Cr=0.9], and [F=0.8, Cr=0.2] 

Step 1) Initialization 

Step 1.1) Set the current generation number G=0; 

Step 1.2) Generate an initialize population 

0,0,1 ,, NPxx   by uniformly and randomly sampling from 

the feasible solution space. 

Step 1.3) Evaluate the objective function values of 

these points 

Step 1.4) FES=NP 

Step 2) For NPi ,,1 ,do 

  Step 2.1) use the three strategies, each with a control 

parameter setting randomly selected from the parameter 

pool, to generate three trail vectors Giu ,1_ , Giu ,2_ , and 

Giu ,3_  for the target vector Gix , . 

   Step 2.2) Evaluate the objective function values of 

three trail vectors Giu ,1_ , Giu ,2_ , and Giu ,3_ ; 

Step 2.3) Choose the best trail vector (denoted as *

,Giu ) 

from the three trail vectors Giu ,1_ , Giu ,2_ , and Giu ,3_  

Step 2.4) Selection and replacement: 

, , ,

, 1

,

, ( ) ( )

,

i G i G i G

i G

i G

u f u f x
x

x otherwise



 


 

Step 2.5) Set FES=FES+3 

Step 3) If FES<= Max_FES, stop and output the vector 

with the small objective function value in the population, 

otherwise, set G=G+1 and go to Step 2. 

end 

 

 

3. Experimental results  
 

In this section, we will compare composite DE with 

other existing algorithm, a design problem that design of 

FBG for a specified bandwidth is considered. The problem 

is solved with unchirped and chirped grating. In order to 

evaluate the consistency of the CMAES algorithm [11], 

for each design 20 runs are conducted with different initial 

solutions in the beginning. The total number of function 

evaluations for each run is 5000. The reported 

computation time indicates the average of the time taken 

for the best solution in every run.  

For each instance, the average running time on the 20 

runs are recorded. The computational conditions are listed 

as follows. 

System: Windows XP 

* CPU: Intel(R) Core(TM) 2 Quad 

* RAM: 1G 

* Language: Matlab 

* Compiler: Matlab 7.0 

 

For the all algorithms, in order to comparison fair, the 

maximum fitness is 5000. 

The FBG model [4] with 20 uniform sections is used 

for the symmetrical TFBG filter design. The index profile 

is bounded to take values between 0 to 5e
-4

. Hence, the 

optimum index profile obtained using the optimization 

method is always simple and can be fabricated using the 

method presented in [12]. In the all algorithm, the desired 

reflective power at the center wavelength is set at 90%. 

We obtained the CMAES Code from [11]. In order to 

compare the performance of CoDE on TFBG filter designs, 

the results of CMAES is considered. 

 

3.1 Results 

 

First, to illustrate the effectiveness of the proposed 

method, we consider to the design of TFBG filter with 

0.2nm bandwidth and 40 mm grating length without chirp.  

Function Evaluations in order to make the comparison fair 

enough. The experimental results of 20 runs are listed in 

Table 1.  As can be seen in Table1, we can find that the 

CoDE algorithm performs better than other algorithm. The 

best entries in Table 1 have been marked in bold. As the 

sum of squared errors is small, the calculated triangular 

spectrum edges are almost linear. Moreover, compared 

with the CMAES algorithm, the consistency of the CoDE 

is high in achieving good solutions. Even the mean 

solution obtained in CoDE is better than the best solution 

obtained by the CMAES algorithm. The modulation 

profile and reflection spectrum of the designed unchirped 

TFBG filter is shown in Fig. 3. The maximum reflective 

power obtained is 86.49. The computation time of the 

CoDE is less than the CMAES. 

 

 
Table 1. Results of unchirped TFBG filter designed for a 

specified bandwidth (BW). 

 

Algorithm CMAES CoDE 

Best SSE 0.008080 0.007476164 

Mean SSE 0.01133458 0.008285403 

Worst SSE 0.0210133 0.0104393644 

SD 0.00327815 8.352603e-004 

Computation 

time 

58.023 38.596 
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Fig. 3. Index modulation profile and reflection spectrum  

of the designed unchirped TFBG filter. 

 

Fig. 4 shows the convergence characteristics of the 

CoDE and the CMAES algorithm. As can be seen in Fig. 4, 

the best fitness value is changed with respect to iterations. 

It can show the marked improvement in the performance 

of the CoDE over CMAES. 
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Fig. 4. Convergence characteristics of the CMAES  

and CoDE. 
 

 

 Second, In order to obtain smooth linear edges in the 

reflective spectrum, the index modulation is up-sampled 

5times by using a linear interpolation [13]. After 

combining the up-sampling procedure, the number of 

uniform sections is 100, while the number of variables 

used in the optimization formulation is still 20. Table 2 

shows the results of the chirped TFBG filter combining 

up-sampling.  The index modulation profile and reflection 

spectrum of the designed chirped TFBG filter are shown in 

Fig. 5. For the same grating length, a larger bandwidth is 

obtained with chirped grating. Then, the edges of the 

reflective spectrum are linear because of the combination 

of the up-sampling scheme. 

 

 

 

 

Table 2. Results of chirped TFBG filter designed for a  

specified bandwidth (BW) with uo-sampling. 

 

Algorithm CMAES CoDE 

Best SSE 0.04874119 0.04864212 

Mean SSE 0.05048776 0.04879409 

Worst SSE 0.061987544 0.049201020 

SD 0.003924219 0.000183 

Computation 

time 
72.63 123.32 
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Fig. 5. Index modulation profile and reflection spectrum of the 

designed chirped TFBG filter with up-sampling. 

 

 

4. Conclusions 

 

This paper illustrated the application of composite 

differential Evolution algorithm called CoDE in designing 

triangular FBG filter fro sensor application. The 

effectiveness of the proposed algorithm is demonstrated on 

the design of triangular FBG filter based on a difficult 

instance. The results obtained using CoDE algorithm is 

compared with the results of CMAES. Comparisons show 

that the CoDE algorithm is more consistent in obtaining 

the best solution with reduced computation time. Hence, 

the CoDE algorithm is effective for the design of TFBG 

filter for sensor application. 

In this paper, we only consider the triangular FBG. 

Our future work consists on other geometries and this 

algorithm will become a useful tool for a FBG designer. 
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